







# Status of S-NPP VIIRS Solar and Lunar Calibration

### **Jack Xiong and Jim Butler**

NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

Ben Wang, Ning Lei, and Jeff McIntire

Science Systems and Applications Inc., Lanham, MD 20760, USA

# **Outline**

### Solar and Lunar Calibration

- Strategies and Activities
- Methodologies

# Performance Updates

- On-orbit Changes and Performance Updates (Improvements)
- Comparison of Solar and Lunar Calibration
- Future Efforts
- Summary

# **Solar and Lunar Calibration Strategies and Activities**

**Solar Diffuser Stability Monitor** 



15 RSB: M1-M11, I1-I3, DNB

H/L gains: M1-5 and M7

λ: 0.4-2.3 μm





SD with a fixed screen

SD calibration each orbit

Daily operation => 3 per week  $(8 \min => 5 \min)$ 

**Future reduction of frequency** and operation time



SC roll maneuver Same phase angle





**Extended SV Port** 

Rotating Telescope Assembly (RTA)

### **Solar Calibration Methodologies**

#### **Quadratic Approach**

VIIRS Radiance (L) Retrieval: 
$$L = F \cdot L_{PL} = F \cdot (c_0 + c_1 \cdot dn + c_2 \cdot dn^2) / RVS$$

F: Calibration scaling factor derived from on-orbit calibration

*C<sub>i</sub>*: Pre-launch calibration coefficients (quadratic algorithm)

RVS: Sensor response versus scan-angle

$$\textit{VIIRS Solar Calibration: } F_{\textit{SD}} = \frac{L_{\textit{SUN}}}{L_{\textit{SD,PL}}} \quad \frac{\textit{Reflectance Based}}{L_{\textit{SUN}} \propto \cdot E_{\textit{SUN}} \cdot \textit{BRDF}(t) \cdot \tau_{\textit{SDS}} \cdot \cos(\theta_{\textit{inc}})}$$

 $L_{SUN}$ : Expected solar radiance reflected from SD panel

 $L_{SD,PL}$ : Retrieved solar radiance using pre-launch calibration coefficients

SD Degradation (H):  $BRDF(t) = H_{Norm}(t) \cdot BRDF(t_0)$ 

# **Lunar Calibration Methodologies**

VIIRS Lunar Calibration: 
$$F_{MOON} = \frac{I_{ROLO}}{I_{MOON,PL}} = \frac{I_{ROLO}}{\sum_{\text{det},sam,scan}} I_{ROON,PL} \cdot \Omega_{\text{B}} \cdot \text{g} / N_{SCAN}$$

 $I_{ROLO}$ : Lunar irradiance (integrated) provided by ROLO model  $I_{MOON,PL}$ : Lunar irradiance retrieved using pre-launch calibration coefficients  $N_{SCAN}$ ,  $\Omega_{B}$ , g: number of scans, pixel solid angle, aggregation factor

### **Ongoing and Future Activities for Lunar Model Improvements:**

- USGS ROLO (Stone/Kieffer)
- NIST high accuracy measurements (Brown et al)
- CNES POLO data

## **On-orbit Changes and Updates (Improvements)**

#### SD and SDSM Screen Transmission

- Pre-launch characterization
- On-orbit yaw maneuvers
- Yaw + regular on-orbit data

#### Correction for Solar Vector Error

- Consistently reprocessed SDR for NASA science research community
- Different impact for VIS/NIR and SWIR

### Modulated RSR (relative spectral response)

- Due to strong wavelength-dependent optics degradation
- Different impact for solar and lunar calibration, and EV data
- Large effect for DNB (broad bandwidth: 500-900 nm) calibration

# SD and SDSM Screen Transmission (LUTs)



## SD and SDSM Screen Transmission (LUTs)

### Impact on F-factor (1/Gain)



# **Correction for Solar Vector Error in SDR Geo Library**

 A mismatch of ECI (Earth-Centered Inertial) frames when computing the transformation to spacecraft frame library leads to ~0.2° error in the solar angles used in the RSB radiometric calibration.

Different impact for VIS/NIR and SWIR bands



• The cos  $\theta_{SD}$  factor is used in both H- and F-factor calculations.



### **SD F-factors for VIIRS Reflective Solar Bands**



# **Solar Diffuser and Optics Degradation**

SD degradation: Large at short wavelength



Optics degradation: Large at NIR/SWIR



### **Development and Update of On-orbit Modulated RSR**

### **Time-dependent RSR**



Large impact on DNB with a broad bandwidth

Small impact on bands with narrow bandwidths and non-negligible OOB responses



### **SD F-factors for VIIRS Reflective Solar Bands**



### SD and Lunar F-factors for VIIRS Reflective Solar Bands



### **Future Efforts**

### Combine SD and Lunar Calibration for Improved SDR LUTs

- SD and lunar observations are made at the same AOI
- Remove potential impact due to SD degradation (SDSM and SD degradation uniformity)

# Use Lunar Observations to and Characterize and Reduce Detector to Detector Calibration Differences

- Similar strategy developed and applied for MODIS calibration
- Small differences in a few VIIRS spectral bands

### Improve Lunar Calibration

- Absolute effort by NIST/USGS (goal: 0.5%) and by GSICS/USGS (goal: 2%)
- Relative response trending and calibration inter-comparison

### **Detector to Detector Calibration Differences**



# **Approaches for Lunar Calibration Improvements**

#### With an empirical libration correction



#### Impact due to lunar phase angles



**Pleiades: POLO** 





# **Summary**

- S-NPP VIIRS continues to perform well, meeting the need for operational users (SDRs/EDRs from IDPS) and science community (reprocessed SDRs/EDRs)
  - NASA VCST and SIPS effort
  - NOAA reprocessing plan
- Improved understanding of both solar and lunar calibration led to generation of consistent LUTs and high-quality data products
- Future efforts planned to address various challenging issues
  - Near-term
  - Long-term